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The ability to pay close attention to the present moment can be a crucial factor
for performing well in a competitive situation. Training mindfulness is one approach
to potentially improve elite athletes’ ability to focus their attention on the present
moment. However, virtually nothing is known about whether these types of interventions
alter neural systems that are important for optimal performance. This pilot study
examined whether an intervention aimed at improving mindfulness [Mindful Performance
Enhancement, Awareness and Knowledge (mPEAK)] changes neural activation patterns
during an interoceptive challenge. Participants completed a task involving anticipation
and experience of loaded breathing during functional magnetic resonance imaging
recording. There were five main results following mPEAK training: (1) elite athletes self-
reported higher levels of interoceptive awareness and mindfulness and lower levels
of alexithymia; (2) greater insula and anterior cingulate cortex (ACC) activation during
anticipation and post-breathing load conditions; (3) increased ACC activation during the
anticipation condition was associated with increased scores on the describing subscale
of the Five Facet Mindfulness Questionnaire; (4) increased insula activation during the
post-load condition was associated with decreases in the Toronto Alexithymia Scale
identifying feelings subscale; (5) decreased resting state functional connectivity between
the PCC and the right medial frontal cortex and the ACC. Taken together, this pilot
study suggests that mPEAK training may lead to increased attention to bodily signals
and greater neural processing during the anticipation and recovery from interoceptive
perturbations. This association between attention to and processing of interoceptive
afferents may result in greater adaptation during stressful situations in elite athletes.

Keywords: mindfulness, fMRI, interoception, insula, athletes, breathing, anterior cingulate cortex

Introduction

The ability to perform well during a high intensity competition is an important characteristic for
elite athletes. For instance, during a difficult competition, a successful athlete adopts a proactive
style in optimizing his performance. In contrast, a less successful individual may adopt a simple
recovery from insult where competition difficulties cause a period of panic or fear of future failure
without an attempt to modify habitual coping mechanisms. There has been mounting evidence to

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 August 2015 | Volume 9 | Article 229

http://www.frontiersin.org/Behavioral_Neuroscience/
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnbeh.2015.00229
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fnbeh.2015.00229
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2015.00229&domain=pdf&date_stamp=2015-08-27
http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00229/abstract
http://loop.frontiersin.org/people/116776
http://loop.frontiersin.org/people/112653
http://loop.frontiersin.org/people/266163
http://loop.frontiersin.org/people/266156
http://loop.frontiersin.org/people/62141
http://loop.frontiersin.org/people/255644
http://loop.frontiersin.org/people/12539
http://loop.frontiersin.org/people/352
http://www.frontiersin.org/Behavioral_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Haase et al. Mindfulness in elite athletes

suggest that mindfulness training may improve the brain’s
response to stressful situations (McNabb et al., 2012; Armananzas
et al., 2013; Austin et al., 2013; Haase et al., 2014). Mindfulness
is “the awareness that emerges through paying attention on
purpose, in the present moment, and non-judgmentally to the
unfolding of experience moment by moment” (VanderWeele and
Robins, 2010).We have recently published two studies examining
the effect of mindfulness training in active duty infantry marines
(Haase et al., 2014; Johnson et al., 2014). Marines who underwent
an 8-week mindfulness training program demonstrated (1)
attenuated brain response in the right insula and anterior
cingulate cortex (ACC) during an emotion processing task
(Johnson et al., 2014); (2) attenuated right insula and anterior
cingulate activation in response to a physiological probe (Haase
et al., 2014); and (3) a positive correlation between attenuated
right anterior insula (AI) activation and increased self-reported
resilience (Johnson et al., 2014).

Interoception consists of the receiving, processing, and
integration of body-relevant signals together with external
stimuli to affect motivated behavior (Craig, 2002, 2009).
Interoceptive processing is critical for optimal performance
because it links disturbances in the body’s internal state
caused by external stimuli to goal-driven behaviors aimed at
restoring homeostatic balance (Paulus et al., 2009). Moreover,
there is increasing evidence that interoceptive processing is
a critical component to mindfulness (Farb et al., 2015). We
previously proposed that producing body prediction errors,
i.e., evaluating the difference between an anticipated/predicted
interoceptive state and the actual interoceptive state experienced
in response to significant perturbations, might be a neural
marker of optimal performance (Malley et al., 2012). This
notion is consistent with findings that elite athletes are acutely
aware of bodily signals (Philippe and Seiler, 2005) and may
more readily produce anticipatory prediction errors (Aglioti
et al., 2008). This suggests that modifying interoception
may be an experimental target for improving an individual’s
ability to respond to internal perturbations brought about
by external stressors. However, further research is needed
to determine if resilience, a critical characteristic of optimal
performance in extreme environments, has a significant
influence on brain structures thought to be important for such
performance.

In the present investigation, an inspiratory breathing load
task is used as the experimental interoceptive provocation probe.
Loaded inspiratory breathing was first introduced in the 1970s
(Lopata et al., 1977; Gottfried et al., 1978) as an effective task
that can produce changes in experimental breathing. Breathing is
a vital human function and any interference with breathing can
produce aversive affective experiences (Pappens et al., 2010), that
provide information about potential threats, leading to increased
anxiety (von Leupoldt et al., 2011). The perceived magnitude
of an inspiratory load is a function of the inspiratory pressure
and indirect function of the added resistance (Killian et al.,
1982). Experientially, loaded inspiratory breathing has a sensory
component of increased work to inhale but also an affective
component that ranges from mild discomfort to intense fear of
the inability to breathe in. These characteristics make breathing

an ideal experimental probe for the interoceptive system, in
particular the insular cortex, as well as a robust interoceptive
stimulus.

Previous neuroimaging literature has identified several
networks within the brain including medial default mode
network, a frontal control network, and a limbic salience
network (Spreng et al., 2013). Various approaches have been
developed to characterize the function of the insular cortex.
One such approach divides the insular cortex into two (Taylor
et al., 2008) or three (Deen et al., 2011) compartments, with
each compartment serving a different function in these large
scale networks. The dorso-AI is commonly associated with
the frontal control network (Chang et al., 2012), but other
findings suggest that the AI is critical for the saliency network
and is functionally connected with frontal, cingulate, parietal,
cerebellar brain areas (Sullivan et al., 2013). The posterior
insula is closely connected to sensorimotor, temporal and
posterior cingulate areas (Cauda et al., 2012). In addition,
it has been proposed that the right fronto-insular cortex,
in conjunction with ACC, plays a causal role in alternating
between the frontal control network and the default mode
network (Prosperi et al., 2009) and is involved in switching
during a variety of perceptual, memory, and problem solving
tasks (Schulz et al., 2015). Consistent with this notion is
the observation that the AI is involved in the processing of
temporal predictions (Limongi et al., 2013) as well as the
influence of self-regulation on functional connectivity (FC; Haller
et al., 2013). These connectivity patterns suggest that the AI
is important for translating emotional salience into activation
of the cognitive control network to implement goal-directed
behavior (Cloutman et al., 2012). Interestingly, the insula has
significant downstream influence on the nucleus accumbens
and striatum, brain areas that are central for reward-related
processing (Cho et al., 2012). Taken together, the insular cortex
is likely to be a temporally predictive switching structure to
serve large neural networks to engage in motivated behavior.
Here we focused on the FC with posterior cingulate cortex
(PCC), which was found to have a role in self-related and self-
referential aspects of cognitive processing (Whitfield-Gabrieli
and Ford, 2012; Garrison et al., 2013; Brewer and Garrison,
2014). Lower connectivity between PCC and ACC during
a task was found in meditators when compared to novices
(Brewer and Garrison, 2014), which points to the role of
these regions in self-related processings. In the present study,
we are interested in determining if a manualized treatment,
Mindful Performance Enhancement, Awareness and Knowledge
(mPEAK), can produce similar changes in FC as those seen in
experienced meditators.

The primary aims of this pilot study are to examine if a 7-week
(2 full-day sessions and 6 weekly, 90 min sessions) intervention
aimed at improving mindfulness by targeting regions identified
in previous neuroimaging studies can modify how the brains
of elite athletes process interoceptive stimuli; FC in the default
mode network during a resting state scan; and if this change
in challenging situations is a function of the insula and ACC
and if these regions are modulated by mindfulness training.
Furthermore, if predicting perturbations in the internal body
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state is a function of AI and ACC, we hypothesize that
heightened activation in these structures is associated with
increased resilience.

Materials and Methods

Participants
The study was conducted at the University of California,
San Diego (UCSD) Center for Functional MRI. The UCSD
Institutional Review Board approved this study and all
participants signed informed consents. Participants were
recruited from the USA BMX (Bicycle Motocross) Cycling
Team (n = 7) and underwent a 7-week mindfulness training
program (see Table 1 for intervention outline). See Table 2 for
demographic information.

Study Design
The BMX group underwent two fMRI scans: (1) baseline
assessment, which occurred 3 days prior to the mPEAK course

TABLE 1 | Mindful Performance Enhancement, Awareness, and
Knowledge.

Session 1 Module 1: Inhabiting your body (180 min)

• The body as the primary focus of attention

• Mindful awareness of the body; body scan

• Research on interoception, optimal performance,
and mindfulness

• Experiential Exercise: straw breathing

• Home practice assignment

Session 1 Module 2: Getting out of your own way and letting go
(180 min)

• The wandering mind and recognizing how “story”
influences performance

• Mindful movement; seated meditation

• Research on the default mode network

• Experiential exercise: Efforting versus letting go

• Home practice assignment

Session 2 Module 3: Working with difficulty (180 min)

• Confronting avoidance in the face of difficulty, by working
with the body

• Seated meditation focusing on difficulty; seated meditation
focusing on letting go

• Research on pain and negative affect

• Experiential exercise: ice bucket

• Home practice assignment

Session 2 Module 4: The pitfalls of perfectionism and the glitch in
goals (180 min)

• Identification of strengths and their “dark side”

• Mindful walking, seated meditation

• Research on perfectionism and self-criticism

• Experiential exercise: Compassionate inner coach

• Home practice assignment

Session 3–8 Six, weekly, foundational Practice Sessions (90 min)

• Check-in

• Supporting practice through injury and discussion

• Mindfulness practice

TABLE 2 | Demographics and self-report measures of study participants.

mPEAK (n = 7)

M (SD)

Demographics

Age 21.86(3.67)

Education (years) 12.57(0.98)

mPEAK T1
M (SD)

mPEAK T2
M (SD)

p

MAIA

Noticing 3.92 (0.26) 3.67 (0.74)

Not-distracting 2.19 (1.17) 2.48 (1.15)

Not-worrying 2.67 (0.82) 3.00 (0.54)

Attention regulation 2.97 (0.70) 3.43 (0.49)

Emotional
awareness

3.91 (0.77) 4.06 (0.19)

Self-regulation 2.86 (0.85) 3.61 (0.64) 0.009

Body listening 2.00 (1.45) 2.71 (0.78)

Trusting 3.71 (0.56) 4.42 (0.37) 0.008

TAS

Describing feelings 9.57(4.20) 8.57 (4.61)

Identifying feelings 12.71 (5.25) 8.43 (1.40) 0.037

External thinking 13.57 (2.15) 14.57 (4.65)

FFMQ

Describe 25.29 (6.99) 30.43 (5.16) 0.007

Acting with
awareness

27.29 (4.54) 26.29 (4.86)

Non-judgment 23.71 (7.34) 24.42 (5.74)

Non-reactivity 19.29 (4.61) 22.85 (3.02)

Observation 26.29 (3.20) 28.57 (6.34)

VAS ratings

Pleasantness 3.32 (2.83) 5.74 (3.77)

Unpleasantness 2.80 (2.44) 1.91 (2.86)

Intensity 1.04 (1.81) 0.37 (0.51)

Response latency
(msec)

Baseline 597 (101) 603 (142)

Anticipation 628 (134) 684 (171)

Load 580 (113) 595 (160)

Post-load 770 (147) 842 (169)

Accuracy (%)

Baseline 98 (2) 95 (8)

Anticipation 99 (1) 95 (6)

Load 98 (1) 95 (10)

Post-load 100 (0) 94 (10)

and (2) post-training, which occurred approximately 1 week
following the mPEAK course.

Intervention
Mindful Performance Enhancement, Awareness and Knowledge
is a 7-week intensive course in mindfulness training that was
built around four core modules (2 modules per day, 3 h per
module, over two consecutive days) with 6 weekly follow-up
foundational practice sessions (90min per session) to solidify and
deepen the practice and skills being taught in the core modules.
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See Table 1 for an outline of the program. The practice sessions
support the ongoing integration of mindfulness practice into
daily routines in the workplace, the training environment or in
competition. All sessions provide a forum for dialog, questions
and comments. The foundation of this program was drawn from
the highly respected and empirically supported Mindfulness-
Based Stress Reduction program (Sugimoto et al., 2013). The first
core module establishes the body as the primary focus of attention
and platform upon which mindfulness unfolds. It is designed to
introduce participants to the experience of mindful awareness
of the body, including interoception and proprioception. The
second core module is devoted to addressing initial challenges
encountered by participants, the universality of the wandering
mind and the fruitlessness of trying to stop the mind from
wandering. Recognizing “story” and how the way in which
we think influences our performance. The third core module
is intended to challenge the notion that avoidance is the best
strategy when it comes to difficulty arising (e.g., pain, fear, stress,
failure, etc.) and to use the experience of working with the body
as a way of grounding oneself in the moment in the face of
difficulty. The fourth and final core module deals specifically
with the contradictory nature of some concepts and attitudes
that seem to be positive, but have some hidden limitations.
Perfectionism and self-criticism can seem to be good motivators,
but research clearly shows that people perform more effectively
when motivated by encouragement, reward and self-compassion.
Specific exercises and practices are taught to address these
findings and support people in finding optimal ways to motivate
themselves and achieve their goals. A secondary intention of this
module is to set the stage for continued regular personal practice
of mindfulness through the post-intensive period. The four core
modules are followed by 6 weekly foundational practice sessions.
These sessions are dedicated to checking in with participants,
supporting their ongoing practice through inquiry, discussion
and mindfulness practice. Each session also includes a specific
relevant topic to focus the meeting and reinforce the importance
of continued practice. Participants were encouraged to practice
mindfulness and self-regulation skills daily, for at least 30 min.

Self-Report Assessments
The BMX participants completed several self-report
questionnaires to assess personality and cognition pre- and post-
fMRI scans. Questionnaires that were administered at baseline
and post-training included: (1) Five Facets of Mindfulness
Questionnaire (FFMQ; Haxby, 2012), designed to measure
the five primary facets of mindfulness (observing, describing,
acting with awareness, non-judging of inner experience, and
non-reactivity to inner experience); (2) Multidimensional
Assessment of Interoceptive Awareness (MAIA; Lanza et al.,
2013) designed to measure body awareness and responsiveness;
and (3) Toronto Alexithymia Scale (TAS; Bagby et al., 1994)
designed to measure the ability to identify and describe one’s
emotions.

Subjective Interoceptive Assessment
Participants wore a nose clip and respired through a mouthpiece
with a non-rebreathing valve (2600 series, Hans Rudolph) that

maintained an airtight seal. The resistance loads consisted of
a stainless steel mesh screen within a Plexiglas tube (loading
manifold), Before the scanning session, participants experienced
a 1 min breathing restriction (40 cmH2O/L/sec) practice run
and rated the experience. Using a 10 cm Visual Analog Scale,
participants provided ratings of the pleasantness, unpleasantness
and intensity of the breathing restriction ranging from “not at all”
to “extremely.”

Functional MRI Inspiratory Breathing Load (IBL
Task)
The basic experimental approach is analogous to the behavioral
interoceptive task described above. Inside the scanner, the
mouthpiece was positioned comfortably between the lips and
was attached to the scanner head coil to eliminate the need for
the participant to contract mouth muscles. During the scanning
session, a simple continuous performance task was administered.
For the task, a single black arrow was presented one at a
time overlaid on a colored rectangle and participants pressed
one of two buttons to indicate the direction of the arrow (left
arrow = left button, right arrow = right button). At the same
time, the color of the rectangle served as a cue to the likelihood
of whether the participant would experience the breathing load
in the next set of trials (blue = no load, yellow = 25% chance
of load). The 25% probability was introduced in order to
maximize the opportunity to measure the effects of uncertain
anticipation of an interoceptive stimulus. Accuracy and response
latency were recorded and analyzed to determine effects of
the anticipation and experience of the breathing restriction.
Randomly varied inter-trial intervals were used between each
anticipation phase. There were four conditions (1) baseline: the
rectangle color signaled that there was no chance of experiencing
the breathing load; (2) anticipation: the color of the rectangle
signaled a 25% probability of experiencing the breathing load
for 40 s; (3) breathing load: the rectangle remained yellow for
40 s while the participant experienced restricted breathing; and
(4) post-breathing load: immediately following the 40 s period
of restricted breathing. Subjects were instructed to maintain a
consistent breathing pace during the scan and exhaled CO2
was measured. This paradigm used an event-related design
and total scan duration was 17 min and 4 s. The paradigm
was divided into two runs of 256 repetitions each (2 s each
repetition). The duration of each condition was “jittered” in
time to maximize the resolution of the hemodynamic response
function. The primary behavioral variables were performance
accuracy and response latency during each condition, and the
primary neuroimaging dependent measure was the activation
in functionally constrained regions of interest during the
anticipation and breathing load condition relative to the baseline
condition (for additional task-related details see Paulus et al.,
2012).

Scanning Parameters
Imaging data were acquired at the UCSD Center for Functional
MRI on a 3T GE MR750 scanner, equipped with an eight-
channel high bandwidth receiver. A high-resolution anatomical
image was obtained, which consisted of a sagittally acquired
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spoiled gradient recalled (SPGR) sequence (172 sagittal slices;
FOV 25 cm; matrix: 192 × 256 (interpolated to 256 × 256); slices
thickness: 1 mm; TR: 8 ms; TE: 3 ms; flip angle: 12◦). A standard
gradient echo-planar images (EPI) pulse sequence was used to
acquire T2∗-weighted functional images (40 axial slices, FOV:
230 mm, matrix: 64 × 64; slice thickness: 3 mm; TR: 2000 ms;
TE 32 ms; flip angle: 90◦). Rapid image T2∗ acquisition was
obtained via GE’s ASSET scanning, a form of sensitivity encoding
(SENSE), which uses parallel imaging reconstruction to allow for
sub k-space sampling.

Image Analysis Pathway
All participant-level data were processed with the Analysis
of Functional NeuroImages (AFNI) software package (Cox,
1996), including temporal and spatial alignment, motion and
outlier detection, concatenation, deconvolution, and Talairach
transformation. Orthogonal regressors were computed for four
conditions: (1) baseline (2) anticipation, (3) breathing load,
and (4) post-breathing interval. A task-based reference function
corresponding to the time interval of the regressor of interest
was convolved with a gamma variate function (Boynton et al.,
1996) that modeled the prototypical 6–8 s delayed hemodynamic
response function (Friston, 1995) and the temporal dynamics
of the hemodynamic response (typically 12–16 s; Cohen,
1997). For each participant, three motion parameters were
acquired and used to adjust for any EPI intensity changes
resulting from motion artifacts. To be excluded, the average
of any one of these parameters had to exceed 2 SD from the
mean or movement had to be greater than the size of the
voxel (4 mm); however, no participant was excluded based
on this criterion. Using the AFNI program, 3dDeconvolve,
multivariate regressor analysis was used to relate changes in
EPI intensity to differences in task characteristics. The main
dependent measure was percent signal change, which was
spatially smoothed with a 4 mm full-width half-maximum
Gaussian filter.

Group Level Analysis
The main dependent measure was percent signal change
during the anticipation, breathing load and post-breathing
load conditions, which were entered into a mixed effects
model (Littell et al., 2000). Linear mixed effects models were
conducted in R (http://cran.r-project.org/), which estimates
parameters using Maximum Likelihood Estimation and
estimates effects using specific contrast matrices. Time (baseline
versus post-training) was included as a fixed factor while
subject was entered as a random factor, and a covariate
of baseline activation was included. Each experimental
condition (anticipation, stimulation, and post-stimulus
intervals) was analyzed separately. The AFNI AlphaSim
program estimates statistical significance based on Monte-
Carlo simulations and as such was employed to calculate
voxel-wise statistics and protect against Type I errors. Given
the spatial smoothing of 4 mm FWHM and a voxel-wise
p < 0.05, the volume threshold for cluster-wise probability
of 0.05 for the whole brain analysis was determined to be
768 uL using the AlphaSim program, the equivalent per voxel

uncorrected threshold is p = 0.00002193. To be considered
for further analysis, clusters were required to meet these
criteria.

Resting State Data Analysis and Functional
Connectivity
Ten minutes of fMRI resting state data with eyes open
(with fixation) were acquired for each subject. Resting state
functional data were corrected for time-shift, motion, and
field inhomogenities, then transferred to standard space, and
resampled to 3 mm3 isotropic voxels. Nuisance regressors
removed from the resting data included: (1) linear and quadratic
trends, (2) six motion parameters and their first derivatives,
and (3) mean WM and CSF signals and their first derivatives.
Each functional volume was spatially smoothed to 6mm FWHM
and low pass filtered with a cut-off frequency of 0.1 Hz. FC
analysis was then performed on the data. The seed region of
interest (ROI) chosen for FC was a 6 mm-radius sphere in the
PCC with the coordinates described in (Van Dijk et al., 2010).
Connectivity maps were generated by computing the correlation
between the average time series in the PCC and all other voxels
in the brain. Correlation maps were subsequently normalized to
z-scores using the Fisher-Z transformation. Paired t-tests were
used to compare the pre- and post-training FC. Regions with
significant differences (p < 0.05) were identified and corrected
for multiple comparisons using AlphaSim in AFNI (cluster
size = 146 voxels).

Behavioral Data Analysis
All behavioral data analyses were carried out with SPSS
22.0 (IBM, Chicago, IL, USA). Repeated measures ANOVA
(RM-ANOVA) were run to examine differences across time
(baseline versus post-mPEAK), separately, for FFMQ, MAIA,
and TAS. Additionally, RM-ANOVA were conducted to
investigate differences across time (baseline versus post-
mPEAK), separately for percent change from baseline for
accuracy and response latency during the IBL task (baseline,
anticipation, breathing load, and post-breathing load), and
for VAS ratings obtained during the behavioral IBL task prior
to the scan session. Given that this is a pilot study, with
a small sample size, corrections for multiple comparisons
were not implemented; results were considered significant at
p < 0.05.

Exploratory Brain-Behavior Correlations
Exploratory correlations were performed between self-report
measures and fMRI brain response to anticipation, breathing load
and post-breathing load conditions. Correlations were limited
to self-report measures that were significantly different from
pre- to post-mPEAK and significant fMRI activation in the
ACC and insula. Spearman’s Rho (ρ) was used to determine
significance of the relationship between the change in self-report
measures (e.g., post-mPEAK TAS Identifying Feelings minus
pre-mPEAK TAS Identifying Feelings) and the change in fMRI
activation (e.g., post-mPEAK ACC activation minus pre-mPEAK
ACC activation). Results were considered significant at p < 0.05;
without corrections for multiple comparisons.
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Results

Self-Report
The TAS Identifying Feelings subscale changed significantly
across time [F(1,6) = 7.18, p = 0.037, Cohen’s d = 1.12],
such that, following the mPEAK training, the BMX athletes
reported significantly less difficulty identifying feelings (Table 2).
There was also a significant effect of time for two subscales of
the MAIA: self-regulation [F(1,6) = 15.54, p = 0.009; Cohen’s
d = 1.51] and trusting [F(1,6) = 15.00, p = 0.008; d = 1.00], such
that following mPEAK training, the BMX athletes self-reported
greater levels of self-regulation and trust. There was a main
effect of time for the FFMQ describe subscale [F(1,6) = 15.68,
p = 0.007; d = 0.84], such that following mPEAK training, the
BMX athletes self-reported greater levels of describing/labeling
with words.

Subjective Breathing Load and Behavioral
Performance During fMRI Breathing Load
There was an overall effect of time for the VAS 40 cmH2O/L/sec
pleasantness ratings [F(1,6) = 6.91, p = 0.039; d = 0.73];
pleasantness ratings increased from pre- to post-fMRI sessions
(Table 2). There was no effect of time for VAS unpleasantness
or intensity ratings. For response latency, there was no
main effect of time. However, there was a main effect of
condition [F(3,12) = 20.27, p = 0.003]; the response latencies

change from baseline were significantly different for all three
conditions. For response accuracy, there was no main effect of
time.

Neuroimaging Results
Anticipation Main Effect of Time
There was a significant effect of time for the anticipation
condition in the right cuneus, right ACC (Figure 1) left insula and
left superior temporal gyrus (Figure 1; seeTable 3 for coordinates
and effect sizes). For all regions, there was a significant increase
in activation following the mPEAK program.

Breathing Load Main Effect of Time
There was a significant effect of time for the breathing load
condition in the left lingual gyrus, right culmen, right caudate, left
superior frontal gyrus, and left supramarginal gyrus (see Table 3
for coordinates and effect sizes). There was a significant increase
in activation following the mPEAK program in the left lingual
gyrus and a significant decrease in activation in the right culmen,
right caudate, left superior frontal gyrus, and left supramarginal
gyrus.

Post-Breathing Load Main Effect of Time
There was a significant effect of time for the post-breathing load
condition in the left precuneus, left cuneus, right dorsolateral
prefrontal cortex (DLPFC; Figure 2) and the right insula
(Figure 2; see Table 3 for coordinates and effect sizes). There was

FIGURE 1 | Percent signal change during the anticipation condition; corrected for multiple comparisons at p < 0.05.
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TABLE 3 | Functional magnetic resonance imaging (fMRI) brain response during inspiratory breathing load (IBL).

Region BA Voxels x y z T-value p-value Cohen’s d

Anticipation

Right cuneus 17 21 10 −91 5 6.264 0.000 5.114

Right anterior cingulate cortex 24 21 4 28 14 6.196 0.000 5.059

Left insula and auperior temporal gyrus 13 13 −42 0 −11 4.029 0.002 3.289

Breathing load

Left lingual gyrus 19 23 −16 −52 1 4.353 0.001 3.554

Right culmen 37 20 43 −45 −19 −5.326 0.000 −4.349

Right caudate 13 18 −18 20 −3.751 0.003 −3.062

Left superior frontal gyrus 6 13 −4 3 61 −5.074 0.000 −4.143

Left supramarginal gyrus 40 12 −62 −43 26 −8.418 0.000 −6.873

Post-breathing load

Left precuneus 31 71 −10 −63 21 −8.230 0.000 −6.719

Left cuneus 18 17 0 −84 15 −4.526 0.001 −3.696

Right dorsolateral Prefrontal cortex 9 14 23 32 32 3.410 0.006 2.784

Right insula 13 12 37 15 −1 3.537 0.005 2.888

FIGURE 2 | Percent signal change during the post-breathing load condition; corrected for multiple comparisons at p < 0.05.

a significant increase in activation following the mPEAKprogram
in the right DLPFC and right insula, and a significant decrease in
activation in the left precuneus and left cuneus.

Exploratory Brain-Behavior Correlations
There was a positive correlation between anticipation ACC
difference activation and FFMQ describe difference, (ρ = 0.775,
p < 0.05; Figure 3). That is, an increase in ACC activation
during the anticipation condition from pre- to post-mPEAK

is associated with an increase in FFMQ describe pre- to post-
mPEAK. In addition, there was a negative correlation between
post-breathing load right insula difference activation and TAS
identifying feelings difference (ρ = −0.764, p < 0.05; Figure 3).
An increase in the right insula activation during the breathing
load condition from pre- to post-mPEAK is associated with
decreased TAS identifying feelings – in other words, better
ability to describe one’s experience. In summary, greater ability
to describe emotions is associated with increased activation
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FIGURE 3 | Exploratory brain-behavior correlations.

in the ACC and right insula, regardless of the self-report
measure.

Functional Connectivity
Functional connectivity maps were generated by computing the
correlation coefficient between the average time series in the
PCC and the rest of the brain, and then normalized to Fisher-
Z values for comparison. Following the mPEAK training there
was a significant decrease in the FC with the seed in PCC
in one cluster (Figure 4). The region contained 152 voxels,
with the center of mass at (x = −6, y = −45, z = 25), and

primarily included portions of the right medial frontal gyrus,
right superior frontal gyrus and right ACC. In other words, this
cluster showed lower correlations with the PCC after the mPEAK
training.

Discussion

The present pilot study aimed to examine whether a 7-week (2
full-day sessions and 6 weekly, 90 min sessions) intervention
intended to improve mindfulness (mPEAK) modifies neural
activation patterns in elite athletes processing interoceptive
stimuli and if this change is related to improved self-assessment,
and changes in resting state FC. This investigation yielded several
interesting findings. First, following mPEAK training, elite
athletes self-reported greater levels of interoceptive awareness,
mindfulness and lower levels of alexithymia. Second, mPEAK
training resulted in increased insula and ACC activation during
the anticipation and post-breathing load conditions during an
interoceptive challenge. Third, there were significant exploratory
brain-behavior correlations, such that increased ACC activation
during the anticipation condition following mPEAK training
was associated with increased ratings on the FFMQ Describe
subscale. Fourth, increased insula activation during the post-
load condition following mPEAK training was associated with
increased ability to identify feelings on the TAS. Fifth, mPEAK
training resulted in decreased PCC FC with the right medial
frontal cortex and ACC. These findings are consistent with the
hypothesis that mPEAK training resulted in increased attention
to bodily signals and greater neural processing in response to the
anticipation and recovery from interoceptive perturbations.

Following the mPEAK training, the athletes’ self-reported
greater levels of MAIA self-regulation and trusting. MAIA
self-regulation refers to the ability to “regulate psychological
distress by attention to body sensations” and MAIA trust
refers to the ability to “experience one’s body as safe and
trustworthy,” both of which are negatively correlated with
trait anxiety (Lanza et al., 2013). In addition, the athletes
reported greater levels of FFMQ describe and a decrease in
TAS difficulty identifying feelings. Taken together, these results
suggest that mPEAK training improves one’s ability to identify
and describe feelings and one’s reactions to bodily sensations,
which may be indicative of reduced trait anxiety and improved
resilience.

Mindful Performance Enhancement, Awareness and
Knowledge training resulted in changes in functional brain
response to an interoceptive challenge. In particular, following
the mPEAK training, there was an increase in activation in the
left insula during the anticipation of the IBL and in the right
insula during the post-breathing load condition. The insula
is part of a larger brain network that processes interoceptive
information (Wiesner and Pfeifer, 2014). It has reciprocal
connections with subcortical, limbic, and executive control brain
systems that allow for the integration of interoceptive signals
and hedonic evaluation (Marlin et al., 2013; Dasgupta et al.,
2014). Several studies have shown increased insula activation
during meditation in experienced meditators (Norman et al.,
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FIGURE 4 | t-statistics for changes (Post-mPEAK Minus Pre-mPEAK) in functional connectivity with the seed in PCC (p<0.05, corrected); negative
values in the figure show the decrease in functional connectivity after mPEAK training.

2006; Gopalakrishnan et al., 2010; Yang et al., 2012), suggesting
that mindfulness practice, which involves exercises that foster
body awareness, recruits interoceptive brain regions. In fact, a
recent study by Farb et al. (2015) demonstrated that mindfulness
training increased interoceptive awareness of respiratory
sensations marked by heightened insular activation (Sohn
et al., 2008). We have previously shown that elite adventure
racers demonstrate increased anticipatory insula activation
during the IBL task and decreased brain activation to the IBL
itself (Fernandez-Luque et al., 2009). It was suggested that this
pattern of activation in response to an interoceptive stressor
may be a neural marker of optimal performance, such that
increased engagement of interoceptive brain regions prior to
experiencing an interoceptive stimulus may have contributed
to a more efficient insula response during the actual experience
of an interoceptive challenge (Fernandez-Luque et al., 2009). In
summary, this pilot study indicates that mPEAK training results
in a general sense of changes in functional activation in neural
regions involved in mindfulness meditation and interoceptive
processing but as a pilot study the results do not represent
anything definitive.

In the present investigation, following mPEAK training,
athletes reported on a subjective level (i.e., MAIA), increased
interoceptive awareness; however, on an objective level (i.e.,
VAS ratings and brain activation), the results were mixed.
While the athletes demonstrated increased insula and ACC
activation during the anticipation and post-load conditions
of the interoceptive challenge, their subjective evaluations
(pleasantness, unpleasantness, intensity) of the breathing load
task did not change. Khalsa et al. (2008) found that experienced
meditators rated their heartbeat detection performance to be
more accurate and the task to be less difficult than the non-
meditators; however, their ability to detect interoceptive changes
was not significantly different than non-meditators. Taken
together, there may be differences in objective and subjective
assessments of interoception, which parallel those of other
constructs, such as impulsivity (Wittmann and Paulus, 2008).
This also suggests the need for more objective assessments
of interoceptive awareness in future investigations, such as
the heartbeat detection task (Critchley et al., 2004). In fact,
recent research suggests that interoception is comprised of
three dissociable dimensions: accuracy, sensibility, and awareness

(Garfinkel et al., 2015). Garfinkel et al. (2015) define Future
studies aimed at delineating the effects of mindfulness-
based meditation on the various facets of interoception are
warranted.

This pilot investigation also suggests increased ACC
activation during the anticipation of an interoceptive stimulus
and increased activation in the DLPFC during the post-breathing
load condition. Together, the insula and ACC, appear to have
a critical influence on the dynamics between default-mode and
executive control networks (Sutherland et al., 2012), integrate
information about the internal state with value and salience
monitoring systems, and are critical for cognitive control
processes. Experienced meditators have exhibited changes in
functional ACC activation during attention (Oquendo et al.,
2012) and focused meditation paradigms (Baca-Garcia et al.,
2006; Zhang et al., 2011; Tovar et al., 2012), and increased
cortical thickness (Pasternak et al., 2009). A recent study
investigating the effects of mindfulness training on attention
found that those who underwent a 6-week mindfulness training
program had increased DLPFC functional activation during
an affective Stroop task and reduced affective Stroop conflict
performance (Bengio, 2007). Furthermore, the authors reported
that increased DLPFC, ACC and insula activation during
negatively valenced stimuli was related to increased practice
time. The authors suggest mindfulness training results in
improved top–down control and that the dose-dependent
response is in line with other studies (Allefeld and Haynes,
2014) which demonstrate that meditation novices may largely
practice focused attention meditation (i.e., awareness of
breath), whereas those with a more stable and long-term
practice shift from focused attention to open awareness
practices.

In prior studies, we have used experimental paradigms
that probe emotion processing and interoception to delineate
the neural systems underlying optimal performance (e.g., elite
athletes, special operations forces). We have identified differential
insula and ACC activation during emotion processing and
loaded inspiratory breathing (Fernandez-Luque et al., 2009; Van
Calster et al., 2010; Zhou et al., 2010; Daemen et al., 2012).
Differential activation of insula, ACC and amygdala during
emotion processing is also associated with self-reported resilience
(Van Gestel et al., 2001; Zhou et al., 2010). The ACC has
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been conceptualized as the limbic motor cortex (Allman et al.,
2001; Craig, 2007), and the critical interface between cognition
and emotion processing (Vogt et al., 2003). Taken together, the
insula and ACC appear to be important brain regions underlying
the ability to perform well under stress. We hypothesize that
AI, possibly in combination with the ACC, not only receives
interoceptive signals but also produces a predictive model that
acts as a signal to the individual of how the body will feel, a
concept we have termed the body prediction error. Recently,
we have examined the neural and behavioral mechanisms of
resilience and have found that individuals who self-report lower
levels of resilience show increased activation in the insula,
which is negatively associated withmindfulness and interoceptive
awareness (Haase et al., under review). In summary, these
pilot data provide additional support that mindfulness and
interoception are important characteristics of resilience and that
neural circuits of resilience can be modified through mindfulness
training in relatively healthy, non-treatment seeking individuals.

The resting state FC analysis was aimed to determine whether
the mindfulness training would affect the resting state FC in
DMN with the focus on its midline node, PCC. Following
the mPEAK training we found decreased FC between PCC
and right medial frontal gyrus, right superior frontal gyrus
and right ACC. A similar result was found during task where
meditators showed lower FC between the PCC and other cortical
midline structures including the ACC and mPFC (Garrison
et al., 2013). PCC activation is thought to be related to multiple
aspects of cognitive processes including attention disruption,
craving, and self-referential processing while its deactivation
is associated with being mindful of the present moment
(Brewer et al., 2013). Lower connectivity between PCC and
mPFC following mindfulness training may indicate reduced self-
referential processing and may facilitate shifting between the
frontal control network and the default mode network (Prosperi
et al., 2009).

We have previously seen an inverse relationship between
anticipatory activation and stimulus related activation during
the IBL task. High resilient individuals appear to show
relatively greater activation during anticipation (Paulus et al.,
2012). Conversely, low resilient individuals have an exaggerated
response during the stimulation (Haase et al., under review).
Here, increased ACCactivation during the anticipation condition
was associated with increased FFMQ describe subscale and
increased insula activation during the post-breathing load
condition was associated with greater ability to identify
emotions. Increased anticipatory activation in the ACC following
mindfulness training, may improve mindful processing during a
time period that is about to come to pass. Additionally, increased
insula activation during the post-breathing load may represent
the immediate predication of interoceptive relief. Therefore,
ultimately mindfulness might not be about the here and now
but about ‘what is about to occur.’ Thus, mindfulness may
help to prepare the brain for significant perturbations and
enable the execution of adaptive responses, which helps to build
resilience.

There are several limitations in the current investigation.
First, we recruited 7 BMX athletes from the USA Cycle Team.

Having such a focused recruitment population, meant that
we could not recruit 7 more BMX athletes at this level for
a control group. Given the small sample size, generalizability
of findings is limited and there may be a lack of power
to detect additional behavioral/functional relationships. As a
result of sample size limitations, we chose not to control
for multiple comparisons in the behavioral data and brain-
behavior relationship analyses. As such, these data are prone
to Type I error that is, classifying an effect as significant
when it is not. A larger sample size might reveal additional
significant findings; however, despite the small sample size,
significant self-report and functional brain changes were
observed. Nonetheless, future studies with larger sample sizes
and across various athletic populations are warranted to better
understand how mPEAK impacts brain and behavior. Second,
this study could not address the question of whether the
observed changes were part of the preexisting characteristics
of individuals who were selected and then trained to become
elite athletes, or whether these neural processing differences
were a consequence of training. However, the reported effects
are investigating the longitudinal changes within individuals
following mPEAK training. Third, this investigation lacked
a comparison group and an active control group. However,
it should be noted that the present findings are consistent
with the literature documenting the effects of mindfulness-
based training on ACC and insula functional activation.
Furthermore, without a control group, it is possible that
the changes in brain function observed in the present pilot
investigation reflect habituation to the stimuli pre- and post-
training. However, this is unlikely, as we have previously
published data with this paradigm that included a control
group and failed to show habituated brain activation (see Haase
et al., 2014). Last, the literature suggests training can alter
perception/confidence in interoceptive performance without
actually affecting performance itself (Khalsa et al., 2008).
As such, the use of self-report measures (e.g., MAIA, TAS,
FFMQ), in the absence of any sensitive behavioral changes
in interoception, make it hard to know whether the athletes
just believe they are better as a result of mPEAK training.
Interoception – similar to emotion – can be conceptualized from
a (a) phenomenological perspective, i.e., how something feels,
(b) an operant perspective, how something affects measurable
behavior, and (c) from a physiological perspective, i.e., what
biological measures are associated with it. In this report we
present evidence for (a) and (c) but not for (b). There are several
possibilities that we will evaluate in the future, which focus on
(1) sensitivity of the behavioral assessments of interoception, (2)
state-dependency (i.e., intra-individual variability), and (3) cross-
modal interoceptive sensitivity, e.g., sensitivity to breathing load
as it relates to heartbeat detection.
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